元器件百科
HOME
元器件百科
正文内容
bf3的电子式 等电子体与杂化类型的判断方法归纳
发布时间 : 2025-05-29
作者 : 小编
访问数量 : 23
扫码分享至微信
Scan me!

等电子体与杂化类型的判断方法归纳

一、等电子体的判断

具有相同价电子数和相同原子数的分子或离子具有相同的结构特征,这一原理称为等电子原理。 如果仅从概念字面出发,判断与A粒子互为等电子体的B粒子的化学式,往往感觉无从下手,或东拼西凑的试写,试写也往往只注意“价电子数”或“原子数”相同某一方面而错答。如写CH4分子的等电子体时许多学生写成NH3(原子数不同)、CCl4(价电子数不同)等,至于再稍复杂一些的,错的更多,实际体现为问题解决方法的欠缺。等电子体的判断一般可采取以下几种方法:

1、同族元素互换法

即将既定粒子中的某元素换成它的同族元素。如:

(1)CCl4的等电子体确定:换IVA族元素有SiCl4、GeCl4等;换VIIA族元素有CF4、CBr4、CI4、CFCl3、……;同时换可有SiF4、SiFCl3、……。

(2)CO2的等电子体确定:可将O原子换为S原子得COS、CS2,注意不能将C原子换为Si原子,因为CO2和SiO2的结构不同(前者为分子晶体,后者为原子晶体)。同理,不能将BeCl2的等电子体确定为MgCl2或BeF2(后两种为离子晶体)。

(3)SO42-的等电子体确定:将一个O原子换为S原子得S2O32-;NO3-的等电子体可确定为PO3-。

(4)对于原子晶体类也可作类似推导:金刚石Cn与晶体硅Sin互为等电子体。

2、价电子迁移法

即将既定粒子中的某元素原子的价电子逐一转移给组成中的另一种元素的原子,相应原子的质子数也随之减少或增加,变换为具有相应质子数的元素。

一般来说,讨论的元素为s区或p区元素,即主族元素居多,通常相关元素的族序数满足A+B=C+D(或A+B=2C)关系的,可考虑将A、B等个数换为C、D(或1A、1B换为2C)。如:

(1)CO2的等电子体确定,除了上述结果以外,还可以采用价电子迁移法:C、O原子的价电子数分别为4、6,从周期表中的位置看,中间夹着N元素,N原子价电子数为5,一个O原子拿一个电子给C原子,在电性不变条件下质子数同时变为7(价电子同时变为5),则可换为两个N原子(由此也可以看出N2与CO互为等电子体)得N2O;如果将C原子的两个价电子转移给两个O原子,元素原子分别转换为1个Be、2个Cl,就可以得到CO2的另一个等电子体BeCl2。

同样可以判断:金刚石C2n与晶体硅Si2n的等电子体还可以为金刚砂(SiC)n、GaAs、AlP等;石墨C2n与白石墨(BN)n互为等电子体;无机苯B3N3H6与有机苯C6H6互为等电子体。

(2)离子之间的等电子体也可以推导:与N3-的等电子体查找方法,可将2个N原子换为1个C原子和一个O原子可得CNO-。

3、电子—电荷互换法

即将既定粒子中的某元素原子的价电子转化为粒子所带的电荷。这种方法可实现分子与离子的互判。如:

CN-的等电子体查找可用N原子1个电子换作1个负电荷,则N原子换为C原子,离子带2个负电荷,其等电子体即为C22-;反之,将CN-的电荷转化为1个电子,该电子给C原子,即得N2,若给N原子即得CO。同样可判断HNO3的等电子体为HCO3-;ICl4-与XeCl4互为等电子体。

在具体问题分析时,通常几种方法同时联想,灵活使用,方可快速准确的回答问题。

例题1、与CNO-互为等电子体的分子、离子化学式依次为_____、______ (各写一种)。

分析:就与CNO-互为等电子体的分子而言,首先需将这1个电荷转化为1个价电子,这个价电子给C变为N得N2O,给N变为O则得CO2(也可直接看作将N2O中2个N原子进行价电子转移换为C、O从而得CO2,再由CO2进行价电子转移或同族元素互换可得COS、CS2、BeCl2等。若进行离子查找,除前面判断出的N3-外,利用同族元素互换可得CNS-;利用电子—电荷互换可得NO2+和CN22-。

答案:N2O或CO2或COS或CS2或BeCl2;N3-或CNS-或NO2+或CN22-。

例2、(1)根据等电子原理,写出CO分子的结构式;

(2)写出NO2+离子的电子式。

分析:CO分子的结构式、NO2+离子的电子式中学中并不作已有知识要求,直接作答难度大,但在题给信息提示下,可以利用等电子原理,先找出我们熟知结构的等电子体:CO与N2互为等电子体,NO2+与CO2互为等电子体,等电子体的结构相同,参照熟悉的N2的结构式、CO2的电子式便可轻松作答。答案:C≡O;

二、杂化类型的判断

杂化轨道理论的引进是为了更好的解释有关分子的空间构型和分子的相关性质,其核心思想是多原子分子中心原子将能级相近、能量较低的价层轨道相互作用,重新组合、再分配,构建成新的轨道,即杂化轨道,轨道杂化的目的是为了更有利于原子成键,成键时能力更强,有利于分子的形成。关键是中心原子的杂化类型能否准确判断,杂化类型判断正确,结合分子组成、价层电子对互斥理论,就容易解决分子构型、分子性质的相关问题。

1、取代法

以中学常见的、熟悉的基础物质分子为原型,用其它原子或原子团取代原型分子中的部分原子或原子团,得到的新分子中心原子与原型分子对应的中心原子的杂化类型相同。如:

(1)CH3CH=CH2分子中C原子的杂化类型判断,看作乙烯基取代了甲烷分子中的一个H原子,则甲基C原子为sp3杂化,也可看作甲基取代了乙烯分子中的一个H原子,故两个不饱和C原子均为sp2杂化;

(2)(CH3)3N看作三个甲基取代了NH3分子中的三个H原子而得,所以其分子中N原子采用sp3杂化;

(3)H2O2看作羟基取代了H2O分子中一个H原子,H2O2中O原子应为sp3杂化;

(4)B(OH)3看作三个羟基取代了BF3中的F原子,可知B(OH)3中B原子为sp2杂化。

2、价电子对数计算法

对于ABm型分子(A为中心原子,B为配位原子),分子的价电子对数可以通过下列计算确定:n=1/2(中心原子的价电子数+每个配位原子提供的价电子数×m),配位原子中卤素原子、氢原子提供1个价电子,氧原子和硫原子按不提供价电子计算;若为离子,须将离子电荷计算在内:n=1/2(中心原子的价电子数+每个配位原子提供的价电子数×m±离子电荷数),阳离子取“-”,阴离子取“+”。根据价电子对数可以有以下结论:

分子 价电子对数 几何构型 中心原子杂化类型

BeCl2 2 直线型 sp

BF3 3 平面三角形 sp2

SiCl4 4 正四面体 sp3

一般来讲,计算出的n值即为杂化轨道数,能直接对映中心原子的杂化类型。如:SO42-的n=4,中心原子S原子为sp3杂化;NO3-的n=3,中心原子N原子为sp2杂化;ClO3-、ClO4-的n均为4,Cl原子均为sp3杂化(但离子空间构型不同,从价层电子对互斥模型看,前者为三角锥形,后者为正四面体型)。

这种方法不适用于结构模糊或复杂的分子、离子,如NO2+、H2B=NH2等的中心原子杂化类型学生就很难用该法进行判断,但可以从其它途径确定。

3、等电子原理应用

等电子体具有相同的结构特征,则等电子体的中心原子的杂化类型相同。用此方法将结构模糊或复杂的分子、离子转化成熟悉的等电子体,然后进行确定。如NO2+、H2B=NH2分别与CO2、CH2=CH2互为等电子体,而CO2、CH2=CH2中心原子C原子分别为sp、sp2杂化,则NO2+中心原子N原子为sp杂化,H2B=NH2中心原子B、N原子均为sp2杂化。

4、价键直查法

从杂化轨道理论可知,原子之间成键时,未杂化轨道形成键,杂化轨道形成键,若未参与成键,剩余的必然是杂化轨道上的孤对电子。在能够明确结构式的分子、离子中心原子杂化类型分析时,可直接用下式判断:杂化轨道数n=中心原子的键数+中心原子的孤电子对数(多重键中只有一个键,其余均为键),可方便找到中心原子的杂化类型。如:

(1)SiF4分子中Si原子轨道杂化类型分析,基态Si原子有4个价电子,与4个F原子恰好形成4个键,无未成键电子,n=4,则SiF4分子中Si原子采用sp3杂化;

(2)基态C原子有4个价电子,在HCHO分子中,C原子与2个H原子形成2个键,与O原子形成C=O双键,C=O双键中有1个键、1个键,C原子无剩余价电子,n=3,则HCHO分子中C原子采用sp2杂化;

(3)三聚氰胺中有两种环境的N原子,环外N原子形成3个键,用去基态N原子5个价电子中的3个,余下1个孤电子对,n=4,则环外N原子采用sp3杂化,环内N原子形成2个σ键、1个π键,用去基态N原子5个价电子中的3个,余下1个孤电子对,n=3,则环内N原子采用sp2杂化。通过以上分析,可以认识到问题的难易是相对的,关键是能否找到解决问题的方法,方法往往有多种,要在学习过程中积累、归纳、体会,有了正确、适合的解决问题的方法,才会收到事半功倍的效果。

高中化学:《分子结构与性质》知识点

共价键

非金属元素原子之间以共用电子对形式形成的化学键叫做共价键。它具有饱和性和方向性。通过以前的学习我们知道共价键可以分为极性共价键和非极性共价键。按电子云重叠的方式,共价键又可以分为σ键和π键。

两个原子的电子云以“头碰头”的方式重叠形成的共价键是σ键,其电子云图像为轴对称图形。σ键强度较大,不易断裂。

两个原子的电子云以“肩并肩”的方式重叠形成的共价键是π键,其电子云图像为镜面对称图形。π键强度较小,不牢固,易断裂。

s电子云形式为圆球形,p电子云为哑铃形。所以s电子云只能形成键,p电子云既能形成σ键又能形成π键。

判断σ键和π键的一般规律是:共价单键是σ键;双键中有一个σ键和一个π键;三键中有一个σ键和两个π键。

键参数——键能、键长与键角

键能越大,化学键越稳定,越不容易被打断。键长越短,键能越大,化学键越稳定,键的长短往往与原子半径的大小有关。

键角是两个共价键之间的夹角。CO2为直线形分子,键角为180°;H2O为V形,键角为105°;NH3为三角锥形,键角为107°18′;CH4和CCl4为正四面体形,键角为109°28′;白磷(P4)也为正四面体形,键角为60°。

等电子体

原子总数相同,价电子总数也相同的分子具有相似的化学键特征,它们的许多化学性质是相似的。如CO和N2就是等电子体。N2的结构式是N≡N,所以CO的结构式是C≡O。

几种常见共价化合物的形成过程及立体构型

(重点记忆)

为什么以上五种分子会有不同的立体构型呢?为了解释这一现象,提出了价层电子对互斥理论。

价层电子对互斥理论(VSERP theory)

价层电子对是指分子中的中心原子上的电子对,包括σ键电子对和中心原子上的孤电子对。我们可利用中心原子上键的总数与孤电子对的总数和来推测分子或离子的价层电子对互斥模型(VSERP模型)。两者和为2,则VSERP模型为直线形;和为3,则为平面三角形;和为4,则为四面体形。如H2O的中心原子是O,O上有两个σ键和两对孤电子对,和为4,故H2O的VSERP模型为四面体形。因有2对孤电子对上未连接原子,故其立体构型为V形。

中心原子上的孤电子对

,a为中心原子的价电子数,对于主族元素来说,价电子数等于原子的最外层电子数;x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数。

鲍林杂化轨道理论是为了解释分子的立体构型提出的。我们可根据VSERP模型来判断中心原子的杂化轨道类型。

若VSERP模型为直线形,则为sp杂化;VSERP模型为平面三角形,则为sp2杂化;VSERP模型为四面体形,则为sp3杂化。举个例子,在甲烷中碳原子是sp3杂化,乙烯中碳原子是sp2杂化,乙炔中碳原子是sp杂化。

配位键和配合物理论简介

要了解配合物,必须先了解配位键。配位键是一种特殊的共价键,与一般共价键的不同在于:一般共价键中的共用电子对是由双方原子共同提供的,而配位键中的共用电子对是由一方提供的,另一方仅提供空轨道。下面我们利用电子式形成过程示意图来讲解二者的区别:

向CuSO4溶液中,逐滴加入氨水,可形成蓝色Cu(OH)2沉淀:

继续滴加氨水,可得到深蓝色的透明溶液。

配位键的强度有大有小,因而有的配合物很稳定,有的很不稳定。

配合物由内界和外界两部分组成,配合物溶于水易电离为内界配离子和外界离子,而内界的配体和中心原子通常不能电离。

题型实战

向下列配合物的水溶液中加入AgNO3溶液,不能生成AgCl沉淀的是

七、 键的极性和分子的极性

由非极性键构成的分子都是非极性分子;由极性键构成的双原子分子都是极性分子,如HCl;由极性键构成的多原子分子,若其正负电荷重心重合,则极性相互抵消,也可以是非极性分子,如CO2、BF3、CH4、CCl4等。

“相似相溶”原理:极性溶质易溶于极性溶剂,非极性溶质易溶于非极性溶剂。HCl、NH3易溶于H2O,苯、I2易溶于CCl4。化学上利用相似相溶原理来除杂。相似相溶原理只是一个经验规律,并不适合于所有的溶质和溶剂。如N2既不溶于水,也不溶于CCl4。

手性碳原子

在同一个碳原子上连接四个互不相同的原子或基团,这样的碳原子称为手性碳原子。含有手性碳原子的有机物具有手性异构体。下图所示碳原子就是手性碳原子。

范德华力、氢键及其对物质性质的影响

范德华力是指分子间存在的相互作用力。相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。范德华力越大,则物质的熔沸点就越高。

氢键是除范德华力外的另一种分子间作用力。它是由已经与电负性很强的原子形成共价键的氢原子(如H2O中的H)与另一个分子中电负性很强的原子(如H2O中的O)之间的作用力。通常可与H结合为氢键的原子有F、O、N。氢键具有方向性和饱和性,但不属于化学键。

作用力大小比较:化学键 氢键 范德华力

乙醇中存在氢键造成两个方面的表现:⑴ 乙醇的熔沸点比同相对分子质量的烃高;⑵ 乙醇能与水混溶。

实验证明,测定接近水的沸点的水蒸气的相对分子质量时,测定值比H2O的实际相对分子质量要大一些。就是因为水蒸气中存在相当量的水分子因氢键而相互缔合,形成了所谓的“缔合分子”。

无机含氧酸分子的酸性

通过前面必修二的学习我们知道:元素非金属性越强,其最高价氧化物的水化物的酸性越强。因为S的非金属性大于C,所以H2SO4的酸性大于H2CO3。

研究表明:对于同一种元素的含氧酸来说,该元素的化合价越高,其含氧酸的酸性越强。存在:H2SO4>H2SO3(按照酸性强弱顺序)

化学上还有一种见解:认为含氧酸的通式可以写成(HO)mROn的形式,n值越大,酸性越强。例如,H2SO4可以写成(HO)2RO2;H2SO3可以写成(HO)2RO 。

文章来源于网络

监制:苑广鸿

责编:娄 锴

编辑:姚 瑶

实习:邓玉卓

相关问答

BF3电子式 是什么样子?这个化合物是否符合所有原子都八电子稳...

[最佳回答]BF3是平面正三角形结构:B分别与三个F各共用1对电子,所有F达到八电子稳定结构,而B看起来只有6个电子,未达到8电子稳定结构;不过B还可以接受来自F上的...

bf3的电子式 怎么写?如题】作业帮

[最佳回答]|..:F:|..|..:B:F:|..|..:F:|..|代表空格

bf3电子式 和结构式?

bf3电子式:bf3结构式:bf3电子式:bf3结构式:BF3的电子式和结构式如图所示:BF3的空间构型是平面三角形结构。

BF3的电子式 怎么写?

BF₃又称氟化硼、硼烷,无色剧毒气体,水解生成硼酸和氢氟酸,。电子式如图所示:BF₃中B原子sp²杂化,分子呈平面三角形,键矩矢量和为零,无极性。BF₃又称氟化硼、...

bf3的电子式 和结构式怎么写?

BF3(三氟化硼)是一种无机化合物,其电子式和结构式可以分别写作:1.电子式:BF32.结构式:FF\/...BF3(三氟化硼)是一种无机化合物,其电子式和结构式可...

BF3的电子式 ?

BF3分子中B最外层3个电子,3个F各给B提供一个电子共用,B的三个单电子提供给3个F共用,其中还有其他作用,虽然B不是8电子稳定结构,由于硼是缺电子结构,三氟化硼...

bf3的电子式 怎么写?

BF3是三氟化硼的化学式,一种无机化合物,其电子式为:三氟化硼为无色气体,有窒息性,在空气中遇湿气立即水解。分解时生成剧毒的氟化物烟雾。实验室中常以液态...B...

bf4 电子式 ?

BF3是三角形构型,由于B的缺电子结构,BF3为lewis酸,可以接受电子对,所以F-的这对孤对电子配位到B的剩余的p轨道中,同时电子云重新分布,B由原来的sp2杂化变为...

BF3的 共价键怎么写?谢谢了,大神帮忙啊】作业帮

[最佳回答]与忆不易团化学科长为您由于现在是用手机为您解答没法画图给您,很抱歉,以下是BF3共价健的叙述:首先把B确定在中间,硼的三个面分别有三个F,并把F周围...

氯化铝 电子式 ?

氯化铝的电子式这样写:氯化铝,化学式为AlCl3,是铝的氯化物。氯化铝熔点、沸点都很低,会升华,为共价化合物。熔化的氯化铝不易导电,与大多数含卤素离子的盐...氯...

 李欣汝刘晓虎  节费手机 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2025  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部